General Certificate of Education Advanced Subsidiary Examination January 2010

Mathematics

MPC1

Unit Pure Core 1

Monday 11 January 20109.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables. You must not use a calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is not permitted.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The polynomial $\mathrm{p}(x)$ is given by $\mathrm{p}(x)=x^{3}-13 x-12$.
(a) Use the Factor Theorem to show that $x+3$ is a factor of $\mathrm{p}(x)$.
(b) Express $\mathrm{p}(x)$ as the product of three linear factors.

2 The triangle $A B C$ has vertices $A(1,3), B(3,7)$ and $C(-1,9)$.
(a) (i) Find the gradient of $A B$.
(ii) Hence show that angle $A B C$ is a right angle.
(b) (i) Find the coordinates of M, the mid-point of $A C$.
(ii) Show that the lengths of $A B$ and $B C$ are equal.
(iii) Hence find an equation of the line of symmetry of the triangle $A B C$.

3 The depth of water, y metres, in a tank after time t hours is given by

$$
y=\frac{1}{8} t^{4}-2 t^{2}+4 t, \quad 0 \leqslant t \leqslant 4
$$

(a) Find:
(i) $\frac{\mathrm{d} y}{\mathrm{~d} t}$;
(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}$.
(2 marks)
(b) Verify that y has a stationary value when $t=2$ and determine whether it is a maximum value or a minimum value.
(c) (i) Find the rate of change of the depth of water, in metres per hour, when $t=1$.
(ii) Hence determine, with a reason, whether the depth of water is increasing or decreasing when $t=1$.
(1 mark)

4 (a) Show that $\frac{\sqrt{50}+\sqrt{18}}{\sqrt{8}}$ is an integer and find its value.
(b) Express $\frac{2 \sqrt{7}-1}{2 \sqrt{7}+5}$ in the form $m+n \sqrt{7}$, where m and n are integers.

5 (a) Express $(x-5)(x-3)+2$ in the form $(x-p)^{2}+q$, where p and q are integers.
(3 marks)
(b) (i) Sketch the graph of $y=(x-5)(x-3)+2$, stating the coordinates of the minimum point and the point where the graph crosses the y-axis.
(ii) Write down an equation of the tangent to the graph of $y=(x-5)(x-3)+2$ at its vertex.
(2 marks)
(c) Describe the geometrical transformation that maps the graph of $y=x^{2}$ onto the graph of $y=(x-5)(x-3)+2$.
(3 marks)

6 The curve with equation $y=12 x^{2}-19 x-2 x^{3}$ is sketched below.

The curve crosses the x-axis at the origin O, and the point $A(2,-6)$ lies on the curve.
(a) (i) Find the gradient of the curve with equation $y=12 x^{2}-19 x-2 x^{3}$ at the point A.
(4 marks)
(ii) Hence find the equation of the normal to the curve at the point A, giving your answer in the form $x+p y+q=0$, where p and q are integers.
(b) (i) Find the value of $\int_{0}^{2}\left(12 x^{2}-19 x-2 x^{3}\right) \mathrm{d} x$.
(5 marks)
(ii) Hence determine the area of the shaded region bounded by the curve and the line $O A$.
(3 marks)

7 A circle with centre C has equation $x^{2}+y^{2}-4 x+12 y+15=0$.
(a) Find:
(i) the coordinates of C;
(ii) the radius of the circle.
(b) Explain why the circle lies entirely below the x-axis.
(c) The point P with coordinates $(5, k)$ lies outside the circle.
(i) Show that $P C^{2}=k^{2}+12 k+45$.
(2 marks)
(ii) Hence show that $k^{2}+12 k+20>0$.
(iii) Find the possible values of k.

END OF QUESTIONS

